
Location Privacy

Mark van Cuijk and Barry Weymes

December 5, 2010

Abstract

As more individuals carry mobile devices that have the capability to determine their current
location and communicate this information to a global network, location based services which provide
the user with personalized information emerge. Several researchers have attempted to formalize the
privacy impact of such services and the level of detailed knowledge they obtain about users. Several
algorithms to cloak the exact location of individuals have been designed, each of them delivering
a certain balance between privacy and usability. This paper presents the results of a small-scale
interview performed by the authors, summarizes several methods to cloak location data and explains
an algorithm for a privacy-aware location query processor.

1 Introduction

As the progression of location based services (LBS)
becomes greater and the ability to locate oneself on
a map using GPS, the possibility of abuse by others
becomes greater also. LBS will have a significant
role to play in the future. Uses such as finding
the nearest shop in unfamiliar terrain or detecting
traffic patterns are already being utilized more and
more these days.

While these new technologies may have benefits,
they also carry the possibility of violating ones pri-
vacy. For example, a simple location based query
to find the nearest train to your location could be
used to track ones movements if it is queried suffi-
ciency frequently enough. Tracking movements of
a user may allow an adversary to deduce additional
information, e.g. someone frequently visiting a can-
cer treatment facility probably has cancer; someone
that unexpectedly visits a competitor of his em-
ployer might be shopping for a new job.

There are many privacy enhancing technologies
(PET) that can help protect ones privacy. We will
outline some of the different PET that are being re-
searched in the field of location privacy. The main
idea in most of the PETs is to be anonymous within
a group of others at your location, therefore pre-
serving ones privacy. k-anonymous is the general
term to describe how one subject cannot be identi-
fiable from k−1 other subjects at the same location
at a given time.

This paper starts with a small-scale interview
research we conducted, in order to find out whether
students of the Radboud University in Nijmegen are
using LBS and whether they’re concerned about

their privacy when using such services. Section 3
introduces the concept of k-anonymity and demon-
strates how this notion can be applied to location
information. Several algorithms are discussed that
combine location data from several users in order to
present anonymized data to an LBS. For an LBS to
use anonymized data, it needs modified search algo-
rithms, one of which is presented in section 4: find
a candidate set of nearest objects, given a cloaked
user location. Section 5 discusses three location
PETs in a social setting: it allows two users of the
system to determine the physical distance between
each other, without revealing exact location infor-
mation in the first place. Finally, a wrap up is done
in section 6.

2 Interview

As part of this project we perform a small inter-
view. This section enlists the questions we posed, a
description of the subjects we used for the interview
and some results of the interview.

2.1 Questions

We wanted to find out whether people are already
using location based services and to see what their
level of understanding of location privacy is.

In question section 1, we ask the students about
their usage of location based services to get them
in the correct frame of mind. In question section 2a
and 2b we ask about the students current usage to
gauge their experiences with the technology. Ques-
tion section 3 is designed to query the students im-
pressions of location privacy after determining their
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usage levels. Finally in question section 4, we ask
the students about scenarios that may change the
way they think about the subject. By comparing
the answers to the questions in sections 3 and 4, we
want to determine whether the concerns students
acknowledge agree with how they respond to spe-
cific scenarios.

Section 1 Do you use location based services on:

• Q1. Your smart phone
• Q2. In-car navigation system
• Q3. Laptop or desktop computer

Section 2a Have you ever used location based ser-
vices to find:

• Q1. An ATM
• Q2. A gas station
• Q3. A specific shop
• Q4. Currently nearby friends

Section 2a Have you ever used:

• Q1. Trackr!1

• Q2. FourSquare2

• Q3. Twitter location tags3

• Q4. Photo camera with GPS

Section 3 Do you have location privacy concerns
with:

• Q1. Google Maps
• Q2. Photo camera with GPS
• Q3. FourSquare

Section 4 Are you concerned about the following
scenario:

• Q1. “While on vacation in Cuba you
make known to the public that you vis-
ited there. Some years later while en-
tering the US a customs officer asks you
what you were doing in Cuba.”

• Q2. “You forgot to tell your boyfriend
or girlfriend that your going to someone
else’s house to study. He or she finds out
because of LBS and asks for an explana-
tion.”

• Q3. “For your job, you visit a customer.
On the way back to the office you make a
lengthy detour. You employer finds out
about the detour and asks for an expla-
nation.”

2.2 Results

We questioned 69 students of the Radboud Univer-
sity, with a slight bias towards students following
a technically-oriented educational program. These
results are therefore not representative for society,
but we expect this target group to resemble higher
educated individuals of the younger generation.

Figure 1: Depicts the answers from the students on
the questions in sections 1, 2a and 2b. Each column
represents a question.

Figure 2: This figure shows the answers to the ques-
tions of section 3. Each column represents a privacy
concern.

1trackr.nl allows users to track the location of a device and display the movements on a map in real-time
2FourSquare is a service that allows users to check-in into a location in order to share this information in social networks
3Twitter is a micro-blogging service, allowing users to post 140 character messages to a stream. Certain twitter clients

can report the location of the user at the time the message is composed.
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Figure 3: This figure shows the results of the ques-
tions of section 4.

2.3 Analysis

Section 1 show that very few people currently
use smart phones and in-car navigation systems,
while all students use location based services – like
Google Maps or Bing Maps – on their personal com-
puter. We expect that smart phone usage is low
because of the high prices of these devices com-
pared to normal phones and the fact that our target
group is students, which have a relatively low bud-
get. Also car usage low among students, so this
probably explains why in-car navigation systems
are not much used in our target group.

Section 2a shows that not many students use
location based services to find anything other than
the location of certain shops. In an additional ad-
hoc questionnaire, we discovered very few students
are aware that they can find ATMs using an LBS
like Google Maps. As with section 1, we note that
many students don’t own a car and therefore proba-
bly never need to find a gas station. Many students
also don’t use the functionality of being able to de-
tect if a friend is close proximity to them. The most
common use for location based services was finding
a specific shop, e.g. finding the closest GAP shop:
64 of the students have used this type of service.

In section 2b, we asked the student which loca-
tion based services they use, other then finding the
location of a certain object. The results is that most
students don’t use or don’t know about many of
these services. Only one person indicated that they
use Trackr! to plot his movements on an interac-
tive map and only 2 people use a camera with GPS
functionality, like the iPhone 4 that automatically
adds the GPS coordinates to each picture. Some
students responded that they don’t know whether
their photo camera tracks GPS coordinates.

In section 3, we ask about the students concerns
about location privacy. 85% of the students report
that they are concerned about Google recording
their locations when using Google Maps. Less peo-
ple are concerned with the privacy issues of having a

GPS-equipped camera and the website FourSquare.
Finally in section 4, students report they most

concerned that their partner would use an LBS to
track discover about their movements to a friends
house. Regarding questions 1 and 3, some noted
that when deciding to visit the US gives nation of-
ficials the right to interrogate you as a foreigner and
that an employer is entitled to request explanation
of what an employee does during work hours.

We expected students to show less concern on
questions in section 3 and expected students who
discover about potential dangers that researchers
talk about – by hearing about the scenarios in sec-
tion 4 – to raise more concern. However, the results
show the contrary: in section 3 students claim they
are rather concerned about their privacy, while the
answers in section 4 show they accept government
officials or employers to question their behavior.
Although probably a more psychological topic, it
can be interesting to do further research given these
results.

3 Location k-Anonymity

In 2002, Sweeney describes a model to allow queries
on a database to obtain valuable information from
a database containing personal information, while
at the same time retaining a certain level of privacy.
This section described the original k-anonymity
model by Sweeney, explains how Gruteser and
Grunwald apply this model to location information
and describes two algorithms that are built upon
the k-anonymity concept: CliqueCloak by Gedik
and Liu and a peer-to-peer cloaking algorithm by
Chow, Mokbel and Liu.

3.1 k-Anonymity in general

To do business, organizations need to keep personal
information. For example, a bank needs to main-
tain financial data on an individual and a hospital
needs to maintain medical records. Often, this data
is useful to conduct research, which is often done
by a third party, but law and privacy policies en-
force organizations to be careful with revealing such
information about individuals.

In [1], Sweeney describes a common practice
for organizations to remove explicit identifiers from
person-specific data, like name, address and tele-
phone number. The assumption that is made is
that the lack of explicit identifiers make the data
secure with respect to the ability to identify per-
sons. Sweeney shows how 87% of the population in
the United States can likely be uniquely identified
based only on {5-digit ZIP, gender, date of birth}
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[2]. Combining data from two sources – medical
data made available to researchers [3] and a voters
list that Sweeney purchased for twenty dollars [4]
– it seemed possible to link diagnosis, procedures
and medications to particularly named individuals.

L. Sweeney.k-anonymity: a model for protecting privacy.International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems,10 (5), 2002; 557-570.
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linking diagnosis, procedures, and medications to particularly named
individuals.

For example, William Weld was governor of Massachusetts at that time
and his medical records were in the GIC data. Governor Weld lived in
Cambridge Massachusetts. According to the Cambridge Voter list, six people
had his particular birth date; only three of them were men; and, he was the
only one in his 5-digit ZIP code.

Ethnicity

Visit date

Diagnosis

Procedure

Medication

Total charge

ZIP

Birth
date

Sex

Name

Address

Date
registered

Party
affiliation

Date last
voted

Medical Data Voter List

Figure 1 Linking to re-identify data

The example above provides a demonstration of re-identification by directly
linking (or “matching”) on shared attributes. The work presented in this paper
shows that altering the released information to map to many possible people,
thereby making the linking ambiguous, can thwart this kind of attack. The greater
the number of candidates provided, the more ambiguous the linking, and therefore,
the more anonymous the data.

2. Background

The problem of releasing a version of privately held data so that the individuals
who are the subjects of the data cannot be identified is not a new problem. There
are existing works in the statistics community on statistical databases and in the
computer security community on multi-level databases to consider. However,
none of these works provide solutions to the broader problems experienced in
today’s data rich setting.

2.1. Statistical databases

Federal and state statistics offices around the world have traditionally been
entrusted with the release of statistical information about all aspects of the
populace [5]. But like other data holders, statistics offices are also facing
tremendous demand for person-specific data for applications such as data mining,

Figure 4: The left circle contains part of the in-
formation Sweeney obtained from [3]; the right cir-
cle contains the information Sweeney obtained from
[4]. The three attributes in the intersection allows
the two data sets to be successfully combined.

As it was shown that just removing explicit
identifiers is not sufficient to properly anonymize
a certain data set, Sweeney proposes a model that
allows organization to publish or sell information
from their database, while making sure that the
identity of individuals cannot be deduced by com-
bining the information from this data set with any
other source. To get to such a strict goal, the k-
anonymity model is proposed to ensure that any
release of information about a single individual can-
not be distinguished from the information about at
least k− 1 other individuals. A formal definition is
given in [1]:

Attributes Let B(A1, . . . , An) be a table with a
finite number of tuples. The finite set of at-
tributes of B are A1, . . . , An.

Quasi-identifier Given a population of entities
U, an entity-specific table T(A1, . . . , An), fc:
U → T and fg: T → U’, where U ⊆ U’.
A quasi-identifier of T, written QT , is a set
of attributes Ai, . . . , Aj ⊆ A1, . . . , An where:
∃pi ∈ U such that fg(fc(pi)[QT ]) = pi.

k-anonymity Let RT(A1, . . . , An) be a table and
QIRT be the quasi-identifier associated with
it. RT is said to satisfy k-anonymity
if and only if each sequence of values in
RT[QIRT ] appears with at least k occurrences
in RT[QIRT ].

3.2 Applied to location data

Gruteser et al [5] looks at a way to apply Sweeney
et al’s method [1] of anonymizing data in general,

to the field of location data. This algorithm seeks
the provide anonymity regardless of the population
density by setting a minimum amount of possible
nodes that any communication could have origi-
nated from. The number used to describe this is
called kmin.

The system model contains an anonymity server
that receives location information from nodes that
communicate with it. This anonymity server acts as
a middle man for all services that the nodes wish to
use. Once a node requests a service the anonymity
server perturbs the location information and for-
wards the message to the external service.

The location of the node can be represented by
the tuple ([x1, x2], [y1, y2][t1, t2]) where [x1, x2] and
[y1, y2] describe an two dimensional area that the
subject was present in and [t1, t2] represents the
time range at which the subject was in the area.
This tuple can be considered anonymous when it
describes the location of other subjects at the same
time.

The key approach to this algorithm is that
the anonymity server monitors the locations of its
nodes. The nodes request for a service will be de-
layed until the required kmin nodes have visited the
area. Then the request will be anonymous. The
time t2 is set to the current time and t1 is set the
the time of the request minus a random cloaking
value.

The location tuple can be considered k-
anonymous once an adversary cannot uniquely
identify a subject through observation, since the
tuple also matches k − 1 other subjects.

3.2.1 Analysis

However in some circumstances an adversary can
reveal a nodes location because of a weakness in
the algorithm.

Consider the following location tuples:

1. ([0, 1], [0, 1][t1, t2])

2. ([1, 2], [0, 1][t1, t2])

3. ([0, 1], [1, 2][t1, t2])

4. ([0, 2], [0, 2][t1, t2])
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Figure 5: This figure displays a weakness in the
algorithm, obtained from [5]; If node 4 requests a
service it can be singled out because the algorithm
must widen the quadrant, if kmin is greater than 1
- which is must be to preserve privacy

All four tuples share the same time attributes.
Let us take kmin to be 3, for example. In figure 5,
the node 4 can be singled out in communications as
all other quadrants have sufficient possible nodes to
prevent a privacy violation. If each numbered node
requests a service at the same time node 4 could
be identified. This simple example shows that the
privacy of the subjects cannot be guaranteed.

3.3 CliqueClock

While the algorithm by Gruteser and Grunwald
(section 3.2) allows the client to specify the accept-
able spatial and temporal resolution for each in-
dividual message, the minimum anonymity set size
kmin is a global parameter and is therefore the same
for all messages.

In an attempt to overcome this limitation,
Gedik and Liu designed the CliqueCloak algorithm
that can handle messages that each have individual
spatial and temporal resolution requirements, but
also have individual privacy constraints by setting
a kmin on each message [6].

3.3.1 Concept of CliqueCloak

The algorithm takes as input a set of messages
ms ∈ S : 〈uid, rno, {t, x, y}, k, {dt, dx, dy}, C〉 from
mobile nodes and transforms these into a set of
transformed messages mt ∈ T : 〈uid, rno, {X :
[xs, xe], Y : [ys, ye], I : [ts, te]}, C〉. The message
with sequence number rno encodes the location
(x, y) of user uid at timestamp t, the requested
minimum anonymity set size k, required spatio-
temporal resolution (dx, dy, dt) and a user message
C. The box defined by the ranges [x− dx, x+ dx],
[y − dy, y + dy] and [t − dt, t + dt] is called the
anonymity constraint box. In the output message,
the spatio-temporal information is transformed into
a cloaking box defined by a range for both spatial
dimensions X and Y and also for the temporal di-
mension I.

Each output message mt relates to exactly one
input message ms; each input message ms relates
to at most one output message mt. This means
that the algorithm cannot “come up” with new
message, but is able to drop input message if it is
unable to construct an output message with the re-
quested spatio-temporal resolution and privacy re-
quirements.

Gedik and Liu introduce a couple of properties
that must hold for all messages:

Spatial and Temporal Containment state
that the cloaking box contains the exact loca-
tion of the user: ms.x ∈ mt.X, ms.y ∈ mt.Y
and ms.t ∈ mt.I

Spatial and Temporal Resolution state that
the anonymity constraint box contains the
cloaking box entirely: mt.X ⊂ [ms.x −
ms.dx,ms.x + ms.dx], mt.Y ⊂ [ms.y −
ms.dy,ms.y + ms.dy] and mt.I ⊂ [ms.t −
ms.dt,ms.t+ms.dt]

Content Preservation states that the user mes-
sage is passed on unmodified: ms.C = mt.C

Location k-anonymity states that there are at
least k − 1 messages, each from a different
node, that are mapped to the same spatio-
temporal cloaking box: ∃T ′ ⊂ T , such that
mt ∈ T ′, |T ′| ≥ ms.k, ∀{mt,i,mt,j}∈T ′ :
mt,i.uid 6= mt,j .uid and ∀mt,i∈T ′ : mt.X =
mt,i.X ∧mt.Y = mt,i.Y ∧mt.I = mt,i

3.3.2 Algorithm description

The idea of the CliqueCloak algorithm is to define
an undirected graph, such that each vertex repre-
sents a message ms ∈ S and an edge between two
vertices ms,1 and ms,2 means that the messages
ms,1 and ms,2 can be transformed into the same
cloaking box and respecting all requested resolu-
tion and privacy constraints.

In a graph G(S,E), S being the set of vertices
and E the set of edges, an edge e = (ms,i,ms,j) ∈
E exists if and only if P(ms,i) ∈ Bcn(ms,j)),
P(ms,j) ∈ Bcn(ms,i)) and ms,i.uid 6= ms,j .uid,
where P(ms) is the (x, y, t) coordinate of message
ms and Bcn(ms) denotes the anonymity constraint
box of message ms. This means that the two
messages must be sent by two different users and
that both locations must lie within each others
anonymity constraint box.

Having this graph, it is straightforward to trans-
late the problem of finding a set of messages that
can be transformed to the same cloaking box into
the problem of finding cliques in the graph G(S,E)
of the size that is at least equal to the largest kmin
of the individual messages.

Each time a new message is received, the al-
gorithm creates a vertex in the graph, determines
which messages can share a cloaking box with the
new message and creates the corresponding edges.
Since only vertices that are within the constraint
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box of the new vertex can form edges, the Clique-
Cloak algorithm can be optimized to collect all ver-
tices that are within the constraint box and then
test the reverse requirement on each of the vertices
in this set. To implement this efficiently, the ver-
tices can be indexed in a multi-dimensional index.
Pseudo-code for this algorithm is given in Algo-
rithm 1 of [6].

3.3.3 Analysis

Several methods to form cliques have been tested,
each giving different results. The best perform-
ing method is called nbr-k and in this summarized
overview we’ll only look into the results by this
method. We mention some of the interesting re-
sults; a more comprehensive overview of the results
of these tests can be found in section 6 of [6], in-
cluding a description of the test methodology.

In general, messages with a lower value for k can
be anonymized easier than messages with a higher
value for k. For the nbr-k method, success rate de-
creases from around 80% for messages with k = 2
to around 60% for messages with k = 5. Success
means that a message has not been dropped before
it expired.

One of the properties of the CliqueCloak algo-
rithm is that each message can have a different
value for k. This means that messages with dif-
ferent k can be combined in a single cloaking box.
A measurement relative anonymity for an individ-
ual message has been introduced, which equals the
ratio between the number of messages that are in
the cloaking box and the value of k for this mes-
sage, e.g. a relative anonymity value of 2 means
that the number of messages in the cloaking box
is twice the value of k. The location k-anonymity
property ensures that the relative anonymity is at
least 1 for each message.

For the nbr-k method, the average relative
anonymity ranges from 1.7 for messages with k = 2
to 1.2 for messages with k = 4. For messages with
k = 5, the relative anonymity is always 1, since
the algorithm never searches for cliques larger than
what is required by the highest k value in a subset
and the tests didn’t include messages with values
for k above 5.

3.4 Peer-to-peer

In the previous algorithms, an intermediate server
– or proxy – must be used to anonymize the loca-
tion of users. In [7], Chow, et al. propose a peer
to peer spatial cloaking algorithm, that doesn’t re-
quire such a server to be in place. The idea is that
before sending location information to the service

provider, the requester will form a group of nodes
and mask its location within this group. It uses the
group to request information, therefore taking the
responsibly of cloaking its location away form the
usual central server system to the nodes themselves.

Figure 6: An example of how peer to peer spatial
cloaking works

Lets start with a simple example. In figure 6,
we can see 5 cars on the road. A wishes to find out
where the nearest gas station is. A looks for other
peers and finds B,C,D and E. A will then cloak
its exact location by randomly selecting a peer, e.g.
D, to communicate for the group; D is called the
agent. This agent takes A′s request and forwards
it onto the location-based database servers. Once
the information is computed the agent D receives
the information and forwards the reply to A.

This algorithm has two modes of use: on-
demand and procative. In the on-demand mode,
the cloaking algorithm is only used when informa-
tion is required by one of the nodes, while proca-
tive mode means the nodes periodically seek other
nodes to form a group with, just in case it or others
wish to request information.

The system model is similar to the other algo-
rithms above. A node or mobile client sends its lo-
cation and its query to the location based Database
servers via the base station. Each node has its own
privacy profile. Each one of them can set its desired
level of privacy. To do this 2 variables are set: k and
Amin. k describes the level of k-anonymity it de-
sires. A high k means a high privacy requirement.
Amin is the minimum resolution of the cloaking spa-
tial region. The higher Amin, the higher success
of finding an appropriate group, but the lower the
level of quality of the returned answer.

Each node has two communication devices at-
tached to it. One is used to communicate with other
peers and the other is used to communicate with
the location based database servers. The method
of communication can be varied, for example using
Bluetooth, GSM or wireless LAN.
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Figure 7: System model

3.4.1 Analysis

In experimental studies it has been shown that
proactive mode outperforms the on-demand mode
in terms of response time, since a group has already
been formed at the moment the user initiates a re-
quest. However the higher overhead of using proac-
tive mode when the system is not used means that
there is a higher idle power consumption, which
may not be acceptable for mobile devices.

4 Query processing

In section 3, several techniques were presented that
can be used to hide the identification of individuals
to a privacy-aware LBS and – more important for
the topic of this section – to cloak the exact loca-
tion of an individual. This means that the query
processor – the component of an LBS that has the
task to process queries presented by clients – has
to cope with location uncertainty.

There are several kinds of queries that can be
performed on location data. In [8], Mokbel, Chow
and Aref present a method for processing location
queries in a privacy-aware setting, that can be im-
plemented in conjunction with existing geographic
information systems.

The kind of query that is being processed by the
explored algorithm is of the kind “Please, find me
the location of the nearest object of type T,” where
T can be an object with a fixed location – like an
ATM machine or a gas station – or a moving object
– like a known friend or a police officer. It is even
possible that the location of this object is stored
as a privacy-aware region, as described in section
4.2. This kind of query is called a nearest-neighbor
query.

Since the query processor is unaware of the ex-
act location of the client, it can intuitively been
determined that it might not always be possible to
return a single correct answer. Given cloaked loca-
tion data for the client, section 4.1 introduces an
algorithm that returns a minimal set of candidate
results of objects with a known exact location. Sec-
tion 4.2 extends the algorithm to cope with locating

the nearest neighbor among objects whose locations
are also cloaked.

4.1 Private queries over public data

Section 5.1 of [8] describes an algorithm that can
handle queries in this situation. When dealing with
public data for objects of type T , the query proces-
sor has access to the full list of objects of that spe-
cific type, which are probably stored in a database:
t ∈ objT : 〈id, {x, y}〉, identified by an object iden-
tifier id and a position (x, y).

Besides this list, the query processor obtains the
(xl, xr, yu, yl) bounds of a rectangle that contains
the position of the client the performs the request
as input. Every point in this rectangle has an equal
probability of being the location of the client. The
output of the algorithm is the set of objects that
can be the nearest neighbor for any client located
inside the input rectangle. Formally, this can be
described as the set of all objects t ∈ objT for
which ∃(x, y) with xl ≤ x ≤ xr ∧ yl ≤ y ≤ yu
such that @t′ ∈ objT : D(P(x, y), t′) < D(P(x, y), t),
with D(p1, p2) being the distance between points p1

and p2.
The algorithm consists of four steps to obtain

the set of output objects:

Step 1: filter objects The cloaked region that
contains the client is rectangle-shaped and
therefore has four corners for which the algo-
rithm knows the exact locations: v1 : (xr, yl),
v2 : (xl, yl), v3 : (xl, yu) and v4 : (xr, yu). For
each corner, the algorithm select the database
object of type T that is closest to the cor-
ner. A set of at most four filter objects is
constructed in this way.
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(a) Step 1: Filters
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(b) Step 2: Middle points
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(c) Step 3: AEXT
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(d) Step 4: Client

Figure 5: Example of a private query over public data.

of di, dj , and dm (Line 17 in Algorithm 2). Finally, the
area AEXT is expanded by the distance maxd in the same
direction of edge eij (Line 18 in Algorithm 2). Figure 5c
depicts this step where all the computed distances for the
four edges are plotted. Only those distances that contribute
to maxd are plotted as solid while other distances are plotted
as dotted lines. An arrowed line is plotted from each edge to
represent its maxd extension to plot AEXT . The intersection
of the arrowed line with its edge represents the point that
has contributed to maxd.

STEP 4: The candidate list step. In this step, the
server issues a range query that returns all target objects
within the area AEXT as the candidate list. The candidate
list is sent to the client where the query can be evaluated
locally (Lines 20 to 21 in Algorithm 2). Figure 5d depicts
this step where the candidate list has only seven objects
that include the exact query answer T13. Notice the differ-
ence between Figure 5d and Figure 4c, where in the former,
the client needs to evaluate her query on only 7 targets as
opposed to 32 targets in the latter case.

Our approach is independent from the nearest-neighbor
and range query algorithms used in both the filter and ex-
tended area steps to find the nearest target to each ver-
tex and the objects within area AEXT , respectively. These
algorithms are assumed to be implemented in traditional
location-based database servers. We do not have any as-
sumptions about these algorithm, it can be employed us-
ing R-tree or any other methods. In fact, our approach can
be seamlessly integrated with any traditional location-based
database servers to turn them to be privacy-aware.

5.1.2 Proof of Correctness
In this section, we prove the correctness of Algorithm 2

by proving that: (1) it is inclusive, i.e., it returns the exact
answer within its candidate list, and (2) it is minimal, i.e.,
area AEXT is of minimal size given the set of filter targets.

Theorem 1. Given a cloaked area A for a user u located
anywhere within A, Algorithm 2 returns a candidate list that
includes the exact nearest target to u.

Proof. Assume that there is a user u located in area A
where u’s nearest target tu is not included in the candidate
list. Assume further that the exact location of u within A
is on the edge eij = vivj . Based on the filter objects ti and
tj of vi and vj , respectively, we identify two cases:
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Figure 6: Private queries over public data.

Case 1: ti = tj . Figure 6a depicts this case. The dotted
circle represents the distance di from vi to t while the solid
circle represents the distance dj from vj to t. The bold line
that is tangent to the solid circle represents the boundary of
the area AEXT that will include the candidate list. For any
location pu of the user u on vivj , if there is a target tu that
is nearest to pu than t, then tu would be within the union
area of the two circles. Thus, tu should be below the solid
line, hence is included in AEXT and is returned within the
candidate list.
Case 2: ti 6= tj . Figure 6b depicts this case. The dotted

and solid circles represent the distances di and dj , respec-
tively. The bold circle represents the distance dm from mij

to ti. The bold line that is tangent to the bold circle repre-
sents the boundary of the area AEXT that will include the
candidate list. Then, the location pu of the user u is either in
the line segment vimij or mijvj . In the former case, similar
to Case 1, if there is a target tu that is nearest to pu than
ti, then tu would be within the union area of the dotted and
bold circles. Thus, tu should be below the solid line, hence
is included in AEXT and is returned within the candidate
list. Similarly, if pu is on the line segment mijvj , then if
there is a target tu that is nearest to pu than tj , then tu

would be within the union area of the solid and bold circles.
Thus, tu should be below the solid line, hence is included in
AEXT and is returned within the candidate list.

From Cases 1 and 2, we conclude that if user u is on the
boundary of the cloaked region A, then any target object tu

that is nearest to u would be included in the candidate list.
Trivially, the proof would be valid if the user u is within the
area A rather than on its boundaries.
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Figure 8: Result of step 1. T12, T13, T16 and
T17 are the selected filter objects, as they are
closest to the corner points of the cloaked re-
gion.

Step 2: middle points For each pair of corners
that share a border of the cloaked region, the

7



algorithm picks the intersection of the per-
pendicular bisector of the associated filter ob-
jects with the border between the two region
corners. If both corners have the same filter
object, then the perpendicular bisector does
not exist. This isn’t a problem, as the single
filter object will be the closest object for each
point on the border.
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Figure 5: Example of a private query over public data.

of di, dj , and dm (Line 17 in Algorithm 2). Finally, the
area AEXT is expanded by the distance maxd in the same
direction of edge eij (Line 18 in Algorithm 2). Figure 5c
depicts this step where all the computed distances for the
four edges are plotted. Only those distances that contribute
to maxd are plotted as solid while other distances are plotted
as dotted lines. An arrowed line is plotted from each edge to
represent its maxd extension to plot AEXT . The intersection
of the arrowed line with its edge represents the point that
has contributed to maxd.

STEP 4: The candidate list step. In this step, the
server issues a range query that returns all target objects
within the area AEXT as the candidate list. The candidate
list is sent to the client where the query can be evaluated
locally (Lines 20 to 21 in Algorithm 2). Figure 5d depicts
this step where the candidate list has only seven objects
that include the exact query answer T13. Notice the differ-
ence between Figure 5d and Figure 4c, where in the former,
the client needs to evaluate her query on only 7 targets as
opposed to 32 targets in the latter case.

Our approach is independent from the nearest-neighbor
and range query algorithms used in both the filter and ex-
tended area steps to find the nearest target to each ver-
tex and the objects within area AEXT , respectively. These
algorithms are assumed to be implemented in traditional
location-based database servers. We do not have any as-
sumptions about these algorithm, it can be employed us-
ing R-tree or any other methods. In fact, our approach can
be seamlessly integrated with any traditional location-based
database servers to turn them to be privacy-aware.

5.1.2 Proof of Correctness
In this section, we prove the correctness of Algorithm 2

by proving that: (1) it is inclusive, i.e., it returns the exact
answer within its candidate list, and (2) it is minimal, i.e.,
area AEXT is of minimal size given the set of filter targets.

Theorem 1. Given a cloaked area A for a user u located
anywhere within A, Algorithm 2 returns a candidate list that
includes the exact nearest target to u.

Proof. Assume that there is a user u located in area A
where u’s nearest target tu is not included in the candidate
list. Assume further that the exact location of u within A
is on the edge eij = vivj . Based on the filter objects ti and
tj of vi and vj , respectively, we identify two cases:

v
i

v
j

t

(a) t = ti = tj

v
i

v
j

t
i t

j

m
ij

(b) ti 6= tj
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Case 1: ti = tj . Figure 6a depicts this case. The dotted
circle represents the distance di from vi to t while the solid
circle represents the distance dj from vj to t. The bold line
that is tangent to the solid circle represents the boundary of
the area AEXT that will include the candidate list. For any
location pu of the user u on vivj , if there is a target tu that
is nearest to pu than t, then tu would be within the union
area of the two circles. Thus, tu should be below the solid
line, hence is included in AEXT and is returned within the
candidate list.
Case 2: ti 6= tj . Figure 6b depicts this case. The dotted

and solid circles represent the distances di and dj , respec-
tively. The bold circle represents the distance dm from mij

to ti. The bold line that is tangent to the bold circle repre-
sents the boundary of the area AEXT that will include the
candidate list. Then, the location pu of the user u is either in
the line segment vimij or mijvj . In the former case, similar
to Case 1, if there is a target tu that is nearest to pu than
ti, then tu would be within the union area of the dotted and
bold circles. Thus, tu should be below the solid line, hence
is included in AEXT and is returned within the candidate
list. Similarly, if pu is on the line segment mijvj , then if
there is a target tu that is nearest to pu than tj , then tu

would be within the union area of the solid and bold circles.
Thus, tu should be below the solid line, hence is included in
AEXT and is returned within the candidate list.

From Cases 1 and 2, we conclude that if user u is on the
boundary of the cloaked region A, then any target object tu

that is nearest to u would be included in the candidate list.
Trivially, the proof would be valid if the user u is within the
area A rather than on its boundaries.

769

Figure 9: Result of step 2. m12, m13, m34

and m24 are the selected middle points.

Step 3: extended area For each border, the al-
gorithm determines the distance from both
corners to their associated filter objects and
the distance from its midpoint object to the
filter object that is closest to that point. In
case the border share a single filter object, the
last value is non-existent and therefore not
taken into account. Among these two or three
distances, the algorithm selects the maximum
and extends the search area by moving the
border outwards over this distance, forming a
rectangle-shaped extended area AEXT .
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Figure 5: Example of a private query over public data.

of di, dj , and dm (Line 17 in Algorithm 2). Finally, the
area AEXT is expanded by the distance maxd in the same
direction of edge eij (Line 18 in Algorithm 2). Figure 5c
depicts this step where all the computed distances for the
four edges are plotted. Only those distances that contribute
to maxd are plotted as solid while other distances are plotted
as dotted lines. An arrowed line is plotted from each edge to
represent its maxd extension to plot AEXT . The intersection
of the arrowed line with its edge represents the point that
has contributed to maxd.

STEP 4: The candidate list step. In this step, the
server issues a range query that returns all target objects
within the area AEXT as the candidate list. The candidate
list is sent to the client where the query can be evaluated
locally (Lines 20 to 21 in Algorithm 2). Figure 5d depicts
this step where the candidate list has only seven objects
that include the exact query answer T13. Notice the differ-
ence between Figure 5d and Figure 4c, where in the former,
the client needs to evaluate her query on only 7 targets as
opposed to 32 targets in the latter case.

Our approach is independent from the nearest-neighbor
and range query algorithms used in both the filter and ex-
tended area steps to find the nearest target to each ver-
tex and the objects within area AEXT , respectively. These
algorithms are assumed to be implemented in traditional
location-based database servers. We do not have any as-
sumptions about these algorithm, it can be employed us-
ing R-tree or any other methods. In fact, our approach can
be seamlessly integrated with any traditional location-based
database servers to turn them to be privacy-aware.

5.1.2 Proof of Correctness
In this section, we prove the correctness of Algorithm 2

by proving that: (1) it is inclusive, i.e., it returns the exact
answer within its candidate list, and (2) it is minimal, i.e.,
area AEXT is of minimal size given the set of filter targets.

Theorem 1. Given a cloaked area A for a user u located
anywhere within A, Algorithm 2 returns a candidate list that
includes the exact nearest target to u.

Proof. Assume that there is a user u located in area A
where u’s nearest target tu is not included in the candidate
list. Assume further that the exact location of u within A
is on the edge eij = vivj . Based on the filter objects ti and
tj of vi and vj , respectively, we identify two cases:
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Figure 6: Private queries over public data.

Case 1: ti = tj . Figure 6a depicts this case. The dotted
circle represents the distance di from vi to t while the solid
circle represents the distance dj from vj to t. The bold line
that is tangent to the solid circle represents the boundary of
the area AEXT that will include the candidate list. For any
location pu of the user u on vivj , if there is a target tu that
is nearest to pu than t, then tu would be within the union
area of the two circles. Thus, tu should be below the solid
line, hence is included in AEXT and is returned within the
candidate list.
Case 2: ti 6= tj . Figure 6b depicts this case. The dotted

and solid circles represent the distances di and dj , respec-
tively. The bold circle represents the distance dm from mij

to ti. The bold line that is tangent to the bold circle repre-
sents the boundary of the area AEXT that will include the
candidate list. Then, the location pu of the user u is either in
the line segment vimij or mijvj . In the former case, similar
to Case 1, if there is a target tu that is nearest to pu than
ti, then tu would be within the union area of the dotted and
bold circles. Thus, tu should be below the solid line, hence
is included in AEXT and is returned within the candidate
list. Similarly, if pu is on the line segment mijvj , then if
there is a target tu that is nearest to pu than tj , then tu

would be within the union area of the solid and bold circles.
Thus, tu should be below the solid line, hence is included in
AEXT and is returned within the candidate list.

From Cases 1 and 2, we conclude that if user u is on the
boundary of the cloaked region A, then any target object tu

that is nearest to u would be included in the candidate list.
Trivially, the proof would be valid if the user u is within the
area A rather than on its boundaries.
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Figure 10: Result of step 3. The new border
is the border of the extended area. The ar-
rows that are drawn indicate the position of
the point contributed to the distance of the
extended area border.

Step 4: candidate list Given the extended area
AEXT – which by the proof in section 5.1.2 of

[8] contains the nearest neighbor – the query
processor selects all points the are contained
in this area and returns that set to the client.
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Figure 5: Example of a private query over public data.

of di, dj , and dm (Line 17 in Algorithm 2). Finally, the
area AEXT is expanded by the distance maxd in the same
direction of edge eij (Line 18 in Algorithm 2). Figure 5c
depicts this step where all the computed distances for the
four edges are plotted. Only those distances that contribute
to maxd are plotted as solid while other distances are plotted
as dotted lines. An arrowed line is plotted from each edge to
represent its maxd extension to plot AEXT . The intersection
of the arrowed line with its edge represents the point that
has contributed to maxd.

STEP 4: The candidate list step. In this step, the
server issues a range query that returns all target objects
within the area AEXT as the candidate list. The candidate
list is sent to the client where the query can be evaluated
locally (Lines 20 to 21 in Algorithm 2). Figure 5d depicts
this step where the candidate list has only seven objects
that include the exact query answer T13. Notice the differ-
ence between Figure 5d and Figure 4c, where in the former,
the client needs to evaluate her query on only 7 targets as
opposed to 32 targets in the latter case.

Our approach is independent from the nearest-neighbor
and range query algorithms used in both the filter and ex-
tended area steps to find the nearest target to each ver-
tex and the objects within area AEXT , respectively. These
algorithms are assumed to be implemented in traditional
location-based database servers. We do not have any as-
sumptions about these algorithm, it can be employed us-
ing R-tree or any other methods. In fact, our approach can
be seamlessly integrated with any traditional location-based
database servers to turn them to be privacy-aware.

5.1.2 Proof of Correctness
In this section, we prove the correctness of Algorithm 2

by proving that: (1) it is inclusive, i.e., it returns the exact
answer within its candidate list, and (2) it is minimal, i.e.,
area AEXT is of minimal size given the set of filter targets.

Theorem 1. Given a cloaked area A for a user u located
anywhere within A, Algorithm 2 returns a candidate list that
includes the exact nearest target to u.

Proof. Assume that there is a user u located in area A
where u’s nearest target tu is not included in the candidate
list. Assume further that the exact location of u within A
is on the edge eij = vivj . Based on the filter objects ti and
tj of vi and vj , respectively, we identify two cases:
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Figure 6: Private queries over public data.

Case 1: ti = tj . Figure 6a depicts this case. The dotted
circle represents the distance di from vi to t while the solid
circle represents the distance dj from vj to t. The bold line
that is tangent to the solid circle represents the boundary of
the area AEXT that will include the candidate list. For any
location pu of the user u on vivj , if there is a target tu that
is nearest to pu than t, then tu would be within the union
area of the two circles. Thus, tu should be below the solid
line, hence is included in AEXT and is returned within the
candidate list.
Case 2: ti 6= tj . Figure 6b depicts this case. The dotted

and solid circles represent the distances di and dj , respec-
tively. The bold circle represents the distance dm from mij

to ti. The bold line that is tangent to the bold circle repre-
sents the boundary of the area AEXT that will include the
candidate list. Then, the location pu of the user u is either in
the line segment vimij or mijvj . In the former case, similar
to Case 1, if there is a target tu that is nearest to pu than
ti, then tu would be within the union area of the dotted and
bold circles. Thus, tu should be below the solid line, hence
is included in AEXT and is returned within the candidate
list. Similarly, if pu is on the line segment mijvj , then if
there is a target tu that is nearest to pu than tj , then tu

would be within the union area of the solid and bold circles.
Thus, tu should be below the solid line, hence is included in
AEXT and is returned within the candidate list.

From Cases 1 and 2, we conclude that if user u is on the
boundary of the cloaked region A, then any target object tu

that is nearest to u would be included in the candidate list.
Trivially, the proof would be valid if the user u is within the
area A rather than on its boundaries.
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Figure 11: Result of step 4. All points that
are within the extended area are selected and
returned to the client. Since the client knows
its exact location, it can select the nearest
neighbor from this set.

4.2 Private queries over private data

One of the more interesting things that Mokbel,
Chow and Aref present in [8] is an algorithm that
allows not only the client that issues a query to
present privacy-aware location data, but also allow
the location of target objects in the database to
have a cloaked location. Instead of a single point
that represents the exact location of a target object,
its location is stored as a rectangle-shaped area,
with any point in that area having an equal proba-
bility of being the exact location of the object.

The algorithm for processing queries over pri-
vate data follows the same steps as the one de-
scribed in section 4.1 and is, in fact, a generalized
version. For each step, one of the corners of the
cloaked region is used as the input for the algo-
rithm:

Step 1: filter objects When determining the
nearest target object T for each of the corners
cu,1 to cu,4 of the cloaked location of user u,
the algorithm uses the corner cT,i of T that
has the largest distance to cu,i.

Step 2: middle points The method to define a
middle point mi,j on the edge between cor-
ners cu,i and cu,j is the same a in the origi-
nal algorithm, with the corners of the target
object regions selected, such that the length
of the line Li,j connecting the two points is
maximal.
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Figure 7: Private query over private data.

Theorem 2. Given a cloaked area A for a user u and a
set of filter target objects t1 to t4, Algorithm 2 issues the
minimum possible range query to get the candidate list.

Proof. In Figures 6a and 6b, the tangent point between
the bold line and the largest circle may contain a target that
is nearest to one location in vivj (point vj in Figure 6a and
point mij in Figure 6b). Thus, if there is another line that
is lower than the bold line, it will cross the largest circle
and may end up in missing target objects. Thus, the bold
line presents the minimum possible expansion for the line
vivj in order to include all possible nearest target objects
that are closer than ti and tj . Applying the same proof for
the four edges of the area AEXT concludes that AEXT is
the smallest possible area that contains all possible nearest
target objects given a set of target filters objects.

5.2 Private Queries over Private Data
In this section, we extend our approach for private queries

over public data to deal with private data that are repre-
sented by cloaked regions rather than by exact locations.
Similar to Section 5.1 and without loss of generality, we fo-
cus on private nearest-neighbor queries over private data.

5.2.1 Algorithm for Nearest-Neighbor Queries
The same idea of Algorithm 2 can be applied for private

data with the following changes:
STEP 1: The filter step. Similar to the filtering step in

Algorithm 2, the four filter target objects are chosen as the
nearest target object ti to each vertex vi. The only difference
is that for each vertex vi, we consider that the exact location
of a target object within its cloaked area is the furthest
corner from vi. Figure 7a shows only the nearest four target
objects t1, t2, t3, and t4 to the cloaked area. Target objects
are drawn as regions since they represent private data. For
clarity, we draw these rectangles smaller in size than the
query area. However, this is not a necessary condition for
our approach. The dotted line from each vertex vi to its
nearest target ti represents the distance that we measure in
determining the nearest target.

STEP 2: The middle point step. The main idea is
similar to that of Algorithm 2. The only difference is that
the line Lij that connects ti and tj would consider the fur-
thest corner of ti and tj from the reverse vertex vj and vi,
respectively. Figure 7a depicts this step. For example, con-
sider edge v3v4, the line L34 connects the furthest corner of
t4 from vertex v3 to the furthest corner of t3 from v4.
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Figure 8: Private queries over private data

STEP 3: The extended area step. The main idea is
similar to that of Algorithm 2. However, the three distances
that are taken into consideration are di as the distance from
vi to the furthest corner of ti from vi, dj as the distance
from vj to the furthest corner of tj from vj , and dm as the
distance from mij to any of the end points of Lij . Figure 7b
depicts such distances. The bold lines represent the largest
distance computed for each edge. The arrow lines represent
the maxd distance used to expand the area A.

STEP 4: The candidate list step. This step is exactly
similar to that of Algorithm 2. To accommodate data areas
rather than exact point locations, we will return any tar-
get object that has an area overlapped with AEXT . More
sophisticated techniques of probabilistic queries and data
uncertainty can take place. For example, we may choose to
return only those target objects that have more than x%
of their cloaked areas overlap with AEXT . Our approach is
completely independent from deciding whether an object is
considered within an area or not. Thus, our approach can be
seamlessly integrated with any approaches for probabilistic
query processing (e.g., [10, 11, 28, 38, 42, 46]).

5.2.2 Proof of Correctness

Theorem 3. Given a cloaked area A for a user u located
anywhere within A and a set of target objects represented
by their cloaked areas, Algorithm 2 with the modifications in
Section 5.2.1 returns a candidate list that includes the exact
nearest target to u.

Proof. The proof is similar to that of Theorem 1 with
the difference of dealing with rectangular areas of the target
objects rather than with exact point locations. Figures 8a
and 8b show the two cases of ti = tj and ti 6= tj , respec-
tively. As in the proof of Theorem 1a, in Figure 8a, any
target object that could be a nearest neighbor to any point
on vivj should be inside the union area of the dotted and
solid circles. Thus, it would be returned with the candidate
list. Similarly, in Figure 8b, any target object that could
be nearest to any point pu in vivj should overlap the union
of the dotted and bold circles if pu is in vimij or overlap
with the union of the bold and solid circles if pu is in mijvj .
Thus, it would be returned within the candidate list.

Theorem 4. Given a cloaked area A for a user u and a
set of filter objects t1 to t4 represented by their cloaked areas,
Algorithm 2 with the modification in Section 5.2.1 issues the
minimum possible range query to get the candidate list.

Proof. The proof is exactly the same as that of Theo-
rem 2. The tangent bold lines in Figures 8a and 8b serve the
same purpose as those tangent lines in Figures 6a and 6b

770

Figure 12: Result of steps 1 and 2. t1 to t4
are the location regions of the selected filter
objects. m12, m13, m34 and m24 are the se-
lected middle points.

Step 3: extended area To determine the dis-
tance that is used to move the borders to cre-
ate the extended area, the maximum of two
or three distances is used. For the distance
between a corner cu,i and its filter object, the
largest distance between the corner cu,i and
any of the corners cT,j is used. The third
distance used, is the one between the middle
point mi,j and any of the endpoints of line
Li,j – which give an equal distance, as point
mi,j is on the perpendicular bisector between
these points.
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Figure 7: Private query over private data.

Theorem 2. Given a cloaked area A for a user u and a
set of filter target objects t1 to t4, Algorithm 2 issues the
minimum possible range query to get the candidate list.

Proof. In Figures 6a and 6b, the tangent point between
the bold line and the largest circle may contain a target that
is nearest to one location in vivj (point vj in Figure 6a and
point mij in Figure 6b). Thus, if there is another line that
is lower than the bold line, it will cross the largest circle
and may end up in missing target objects. Thus, the bold
line presents the minimum possible expansion for the line
vivj in order to include all possible nearest target objects
that are closer than ti and tj . Applying the same proof for
the four edges of the area AEXT concludes that AEXT is
the smallest possible area that contains all possible nearest
target objects given a set of target filters objects.

5.2 Private Queries over Private Data
In this section, we extend our approach for private queries

over public data to deal with private data that are repre-
sented by cloaked regions rather than by exact locations.
Similar to Section 5.1 and without loss of generality, we fo-
cus on private nearest-neighbor queries over private data.

5.2.1 Algorithm for Nearest-Neighbor Queries
The same idea of Algorithm 2 can be applied for private

data with the following changes:
STEP 1: The filter step. Similar to the filtering step in

Algorithm 2, the four filter target objects are chosen as the
nearest target object ti to each vertex vi. The only difference
is that for each vertex vi, we consider that the exact location
of a target object within its cloaked area is the furthest
corner from vi. Figure 7a shows only the nearest four target
objects t1, t2, t3, and t4 to the cloaked area. Target objects
are drawn as regions since they represent private data. For
clarity, we draw these rectangles smaller in size than the
query area. However, this is not a necessary condition for
our approach. The dotted line from each vertex vi to its
nearest target ti represents the distance that we measure in
determining the nearest target.

STEP 2: The middle point step. The main idea is
similar to that of Algorithm 2. The only difference is that
the line Lij that connects ti and tj would consider the fur-
thest corner of ti and tj from the reverse vertex vj and vi,
respectively. Figure 7a depicts this step. For example, con-
sider edge v3v4, the line L34 connects the furthest corner of
t4 from vertex v3 to the furthest corner of t3 from v4.
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Figure 8: Private queries over private data

STEP 3: The extended area step. The main idea is
similar to that of Algorithm 2. However, the three distances
that are taken into consideration are di as the distance from
vi to the furthest corner of ti from vi, dj as the distance
from vj to the furthest corner of tj from vj , and dm as the
distance from mij to any of the end points of Lij . Figure 7b
depicts such distances. The bold lines represent the largest
distance computed for each edge. The arrow lines represent
the maxd distance used to expand the area A.

STEP 4: The candidate list step. This step is exactly
similar to that of Algorithm 2. To accommodate data areas
rather than exact point locations, we will return any tar-
get object that has an area overlapped with AEXT . More
sophisticated techniques of probabilistic queries and data
uncertainty can take place. For example, we may choose to
return only those target objects that have more than x%
of their cloaked areas overlap with AEXT . Our approach is
completely independent from deciding whether an object is
considered within an area or not. Thus, our approach can be
seamlessly integrated with any approaches for probabilistic
query processing (e.g., [10, 11, 28, 38, 42, 46]).

5.2.2 Proof of Correctness

Theorem 3. Given a cloaked area A for a user u located
anywhere within A and a set of target objects represented
by their cloaked areas, Algorithm 2 with the modifications in
Section 5.2.1 returns a candidate list that includes the exact
nearest target to u.

Proof. The proof is similar to that of Theorem 1 with
the difference of dealing with rectangular areas of the target
objects rather than with exact point locations. Figures 8a
and 8b show the two cases of ti = tj and ti 6= tj , respec-
tively. As in the proof of Theorem 1a, in Figure 8a, any
target object that could be a nearest neighbor to any point
on vivj should be inside the union area of the dotted and
solid circles. Thus, it would be returned with the candidate
list. Similarly, in Figure 8b, any target object that could
be nearest to any point pu in vivj should overlap the union
of the dotted and bold circles if pu is in vimij or overlap
with the union of the bold and solid circles if pu is in mijvj .
Thus, it would be returned within the candidate list.

Theorem 4. Given a cloaked area A for a user u and a
set of filter objects t1 to t4 represented by their cloaked areas,
Algorithm 2 with the modification in Section 5.2.1 issues the
minimum possible range query to get the candidate list.

Proof. The proof is exactly the same as that of Theo-
rem 2. The tangent bold lines in Figures 8a and 8b serve the
same purpose as those tangent lines in Figures 6a and 6b
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Figure 13: Result of step 3. The bold border
is the border of the extended area.

Step 4: candidate list Given the extended area,
all target objects T that have a cloaked area
that overlaps with the extended area, have
a probability of more than 0 of being the
nearest-neighbor and can be returned to the
user u as part of the candidate list.

4.3 Correctness

For each of the algorithms described in sections 4.1
and 4.2, two theorems are given in [8]:

Completeness Given a cloaked area A for a user
u located anywhere within A, the algorithm
returns a candidate list that includes the ex-
act nearest target to u.

Minimum number of results Given a cloaked
area A for a user u and a set of filter tar-
get objects t1 to t4, the algorithm issues the
minimum possible range query to get the can-
didate list.

These two theorems can be written more for-
mally as, where it should be noted that the phras-
ing “minimum possible range query” can be inter-
preted as requiring the AEXT area to be rectangle-
shaped, such that it can be expressed using bounds
(xl, xr, yu, yl):

Completeness ∀(x, y) ∈ A : (∃t ∈ AEXT : (@t′ ∈
objT : D(t′,P(x, y)) < D(t,P(x, y))))

Minimum number of results ∀t ∈ AEXT :
(∃(x, y) ∈ A : (@t′ ∈ objT : D(t′, (x, y)) <
D(t,P(x, y))))

Although [8] contains a proof for both theorems,
which are correct for the interpreted requirement on
the shape of AEXT , we have actually determined
that the proof for the minimum result theorem is
incorrect if no restrictions on the shape of AEXT
apply. We can even provide a counter-example us-
ing the figures in section 4.1 to demonstrate that
the theorem itself isn’t valid without this restric-
tion. Note that this restriction hasn’t explicitly
been stated in [8]. Although this counter-example
invalidates the theorem, it’s impact is only small
and the presented algorithm is very useful never-
theless.

The example figures used in sections 4.1 already
contain a target object T21 that can be used as a
counter-example. The object lies within the ex-
tended area (T21 ∈ AEXT ), while it can never be
the nearest object, since for all points (x, y) be-
tween v1 and v2, and therefore all points (x, y) in
the dark area A, the distance to T16 is smaller than
the distance to T21: ∀(x, y) ∈ A : D(P(x, y), T16) <
D(P(x, y), T21).

5 Social location privacy

The privacy enhancing technologies presented in
the previous sections describe situations where a
user wants to query a database containing location
information about objects of a specific kind, i.e. the
nearest neighbor query. In all cases – except for
the peer-to-peer solution described in section 3.4
– there is an intermediate system that knows the
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exact location of users and has the task of trans-
forming messages in such a way that they can be
relayed to an LBS provider without revealing user
identification and exact location information.

Zhong, et al., take a different approach in [9],
where they describe three protocols that are capa-
ble of conditionally revealing the exact location of
two users of a system to each other, without reveal-
ing this information to a third party, like a social
network provider. The three protocols take a differ-
ent approach and therefore result in a different kind
of information to be revealed, but have a common
property that specific location information is only
revealed when the distance between both users is
within a specified range.

5.1 The Louis Protocol

The Louis protocol is described in section 4 of [9]
and consists of two phases. In the first phase, Al-
ice and Bob are able to learn whether the distance
between them is within a certain range, while an
optional run of phase two allows them to reveal
their exact locations. The protocol makes use of
a third party, which will not learn the locations of
either Alice or Bob.66 G. Zhong, I. Goldberg, and U. Hengartner

Trent

6(u,v)
(x,y)

5

1

2 Alice
Bob

3

4

Fig. 1. System model of the Louis protocol. The dashed arrows indicate the optional
second phase.

friendship, so they are less likely to misbehave. We discuss the detection of
misbehaviour by Alice or Bob, and of cheating by the third party Trent in
section 4.3.

4.1 Protocol Description

We assume that a location can be mapped to two-dimensional coordinates and that
the mapping is known to Alice and Bob. Let Alice’s location be (x, y) and Bob’s
be (u, v). By the definition above, they are nearby if

√
(x − u)2 + (y − v)2 < r.

Equivalently, we can check the sign of d = (x − u)2 + (y − v)2 − r2. In particular,
Bob is near Alice if d < 0.

Figure 1 presents the two communication channels used in our system model.
The first is between Alice and Bob, and the second is between Alice and Trent.
Alice also acts as a relay of the communication between Bob and Trent. The
benefit of this approach is to hide Bob’s identity from Trent, thus improving
privacy. We assume that the two secure communication channels are set up
before our protocol begins.

The protocol consists of two phases. The first phase lets Alice determine
whether Bob is nearby. If this is the case, the (optional) second phase lets Alice
and Bob learn each other’s locations. In our protocol, EA(·) is the Paillier addi-
tive homomorphic encryption function using Alice’s public key, ET (·) is a (non-
homomorphic) public-key encryption function using Trent’s public key, H(·) is
a cryptographic hash function, sigA(m) is Alice’s signature on message m, and
similarly with sigT (m).

1. First phase: Alice determines her location (x, y) and her desired radius r,
and picks a random salt sA.
Alice→Bob: EA(x2 + y2), EA(2x), EA(2y), r, H(x ‖ y ‖ sA)

2. Bob checks the value of r. If he thinks r is too large, he aborts the protocol.
Otherwise, he determines his location (u, v), picks a random value k and
computes

EA(d + k) =
EA(x2 + y2) · EA(u2 + v2) · EA(k)

(EA(2x))u · (EA(2y))v · EA(r2)
,

Bob also chooses a random salt sB.
Bob→Alice: EA(d + k), ET (k), H(u ‖ v ‖ sB), H(k).

3. Alice decrypts EA(d + k).
Alice→Trent: d + k, ET (k), sigA(d + k), sigA(ET (k))

Figure 14: System model of the Louis protocol.
Alice and Bob want to share location data, while
Trent is a third party that won’t learn anything
about the location of Alice and Bob. The solid ar-
rows indicate protocol messages for the first phase,
the dashed arrows indicate message for the second
phase.

Define (x, y) as the location of Alice and (u, v)
as the location of Bob. The distance between both
individuals is then given by

√
(x− u)2 + (y − v)2.

Testing that this is below a certain maximum range
r can be done efficiently by checking whether d =
(x − u)2 + (y − v)2 − r2 < 0. The goal of the
first phase of the protocol is to perform this check,
without revealing both (x, y) and (u, v) to a single
party.

In the protocol description, PA(·) is the Pail-
lier encryption function [10] using the public key
of Alice, RT(·) is a public-key encryption func-
tion (say, RSA) using the public key of Trent,
H(·) is a cryptographic hash function, sigA(m) is
a signature by Alice on message m and similarly
sigT(m) is a signature by Trent. Note that the Pail-
lier encryption function is non-deterministic and

that is has the following homomorphic property:
PA(m1 +m2) = PA(m1) · PA(m1).

The messages below form the protocol; the first
four message form phase one and the two remain-
ing messages form phase two. Both the connection
between Alice and Bob and the one between Alice
and Trent are assumed to be confidential.

A→ B PA(x2 + y2), PA(2x), PA(2y), r,
H(x‖y‖sA)

B → A PA(d+ k), RT(k), H(u‖v‖sB), H(k)

A→ T d+ k, RT(k), sigA(d+ k), sigA(RT(k))

T → A answer,
sigT(answer ‖ sigA(d+ k)‖ sigA(RT(k)))

A→ B answer, d + k, sigA(d + k), sigA(RT(k)),
sigT(answer ‖ sigA(d+k)‖ sigA(RT(k))), x, y,
sA

B → A u, v, sB , k

sA is a random salt chosen by Alice and sB
is one chosen by Bob; r is the desired maximum
radius chosen by Alice; k is a random value se-
lected by Bob. After receiving the first message,
Bob can decide to abort the protocol if he doesn’t
like the value of r. Note that Bob is able to com-
pute PA(d + k) using the homomorphic property
of the Paillier encryption function, using the values
PA(x2 + y2), PA(2x) and PA(2y) he received from
Alice and the values PA(u2 + v2), PA(2u), PA(2v),
PA(k) and PA(r2) he computes himself:

PA(d+ k)

= PA((x− u)2 + (y − v)2 − r2 + k)

= PA(x2 + u2 − 2xu+ y2 + v2 − 2yv − r2 + k)

=
PA(x2 + y2) · PA(u2 + v2) · PA(k)

(PA(2x))u · (PA(2y))v · PA(r2)

After receiving the third message, Trent can de-
crypt RT(k) and subtract it from d+k to obtain d.
If d < 0, Trent sets the answer to ‘YES’. Trent sets
the answer to ‘NO’ otherwise. After receiving the
forth message, Alice knows whether the distance to
Bob is smaller than r and can decide whether or not
to proceed with the second phase of the protocol.

In the second phase, Alice reveals her location
to Bob and sends him all information that he needs
to verify her location and the answer from Trent.
Bob can now decide to reveal his location to Alice.
By including his salt and random k, Alice can verify
the protocol run.
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5.1.1 Louis protocol analysis

Assuming an honest protocol run, after the first
phase neither party will not learn the exact loca-
tion of any of the other parties involved. Trent will
learn nothing about the locations of Alice or Bob
and he won’t even learn about the distance between
them. The only thing he will learn is the difference
in distance and radius of the circle that is recog-
nized as “nearby”. Although Alice nor Bob will
learn this difference in value, Trent does sent the
sign of this value to Alice, so she’ll learn whether
the distance to Bob is above or below the radius
r that she came up with. After the second phase,
both Alice and Bob will learn each others exact
locations, while Trent will not learn any new infor-
mation.

When one or more of the parties involved in the
protocol are dishonest, some interesting conclusions
can be drawn. The hash values used in the mes-
sage exchange ensure that both parties can verify
that the locations revealed in the second phase are
the same as those committed to in the first phase.
However, the locations that are reported by Alice
and Bob can in no way be verified by this protocol.
Therefore, the easiest attacks possible by both Al-
ice and Bob is to use incorrect location data during
the entire protocol run. Such behavior defeats the
purpose of this protocol and may damage the social
relation between both parties.

One interesting attack Alice can perform is to
execute the first phase of the protocol several times,
using different faked values for her location. This
way, she can probe Bob for being at a set of likely
locations. Bob can prevent such an attack by refus-
ing to take part of the protocol when it is invoked
multiple times within a short timeframe.

The protocol has no way to prevent or detect
Alice or Bob to collude with Trent. When Alice
and Trent collude, they are able to determine the
distance between Alice and Bob:

√
d+ k − k − r2.

When Bob and Trent collude, they can in the same
way determine the distance between Alice and Bob,
but it’s even more powerful to have Trent always re-
turn ‘YES’, in order to persuade Alice to reveal her
exact location to Bob, after which Bob can abort
the protocol.

5.2 The Lester Protocol

The Louis protocol described in section 5.1 requires
a semi-trusted third party. Although this third
party learns only the difference between the dis-
tance between Alice and Bob and the requested
threshold radius, Alice and Bob may be interested
in using a protocol that doesn’t have a dependency

on a third party. The Lester protocol presented
in section 5 of [9] removes the need for the third
party, at the cost of only disclosing the distance
between the two users – instead of the exact loca-
tion(s) – to Alice and disclosing nothing to Bob. It
is noted, however, that the protocol can be run a
second time with the roles reversed to perform a
mutual exchange of information.

In the protocol description, a ∈ Zq is the pri-
vate key of Alice, b is the private key of Bob and
CA(m) = (ca, cb) = (gr (mod p), Ar+m (mod p)) is
the CGS97 encryption function [11], using a gen-
erator g ∈ Zp, a random value r ∈R Zq and the
public key of Alice A = ga. Alice and Bob can
both compute C = Ab = Ba, like Diffie-Hellman
key exchange. Like the Paillier encryption func-
tion, the CGS97 encryption function is both non-
deterministic and homomorphic: CA(m1 + m2) =
(c1,a · c2,a, c1,b · c2,b). CGS97 also has the property
that decryption involves computing a discrete loga-
rithm and therefore takes O(

√
M), where M is the

number of possible plaintext messages, when using
the Pollard lambda method described in [12].

As before, (x, y) defines the location of Alice and
(u, v) the location of Bob. D = (x−u)2 +(y−v)2 is
the squared distance between Alice and Bob. The
protocol requires two messages to be exchanged:

A→ B CA(x2 + y2), CA(2x), CA(2y)

B → A t, CA(b · (D · 2t + s))

In the second message, Bob introduces a ran-
dom salt s of length t. The length t determines
the amount of work Alice has to do to successfully
decrypt the message. Note that Bob is able to com-
pute CA(b·(D ·2t+s)) using the homomorphic prop-
erty of CGS97, using CA(2tb ·D) and CA(b ·s) as in-
put ciphertexts. Bob can compute CA(2tb ·D) using
the values CA(x2 + y2), CA(2x) and CA(2y) he re-
ceived from Alice and the values CA(u2+v2), CA(2u)
and CA(2v) he computes himself. In the derivation
below, the · operator is overloaded as pairwise mul-
tiplication operator when used with two CGS97 ci-
phertext as operands:

CA(2tb · ((x− u)2 + (y − v)2))

= CA(2tb · (x2 + u2 − 2xu+ y2 + v2 − 2yv))

= CA(x2 + u2 − 2xu+ y2 + v2 − 2yv)2
tb

=
(CA(x2 + y2) · CA(u2 + v2)

(CA(2x))u · (CA(2y))v

)2tb

Using CA(b·(D ·2t+s)) = (gr, Ar+(b·(D·2t+s))) =
(gr, ArAb·(D2t+s)) andAr = gar, Alice can compute
Ab·(D·2

t+s) = CD·2
t+s from the received message.
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If Alice wants to determine whether the distance
to Bob is less than some threshold r, she tries to
solve the discrete logarithm by finding D · 2t + s
in the range [0, r22t]. Using the Pollard lambda
method [12], this takes O(

√
r22t) = O(2t/2r) time.

Notice that this is linear in the radius r chosen by
Alice and exponential in the work factor t chosen
by Bob.

If Alice succeeds in solving the discrete loga-
rithm, she can obtain D from D · 2t + s by a shift-
ing the value by t bits (or performing an integer
division by 2t) and she can compute the distance
r̂ =
√
D to Bob. If Alice fails to solve the discrete

logarithm, she can conclude that the distance r̂ to
Bob is larger than r.

5.2.1 Lester protocol analysis

In the Lester protocol, only Alice and Bob partici-
pate, so there is no third party Trent that can learn
anything about the locations of Alice or Bob or can
collude with any of them. Like the Louis protocol,
the Lester protocol cannot enforce Alice and Bob to
use their real location in the message exchange, but
neglecting to do so may damage the social relation
between them.

Regarding the protocol, it is interesting to note
that it is difficult for Bob to determine a correct
value for t. A value too high may prevent Alice
from successfully learning the distance between her
and Bob, while a value too low will allow Alice to
determine the distance in a situation where it is
larger than Bob is comfortable to reveal.

Since the time to solve the discrete logarithm is
linear in the probed radius, Alice can easily double
her effort in an attempt to double her search radius.
Another effect is that Bob must know what kind of
equipment Alice is using in order to determine a
suitable value for t and failure to do so introduces
a mismatch between his privacy requirements and
the ability for Alice to find his location. For exam-
ple, if Bob chooses a t that allows Alice to find him
with a mobile device within a certain range, she
can probably find him within the same timeframe
in a much larger area, using her personal computer.
We believe this critical property makes the Lester
protocol unsuitable for real-world scenarios.

5.3 The Pierre Protocol

One disadvantage of the Lester protocol described
in section 5.2 is that Alice can decide to do more
work, to discover the distance between her and Bob
for a longer distance. For example, if Bob decides
on a certain factor that allows Alice to determine
the distance within 500 meters, Alice can choose

to do twice the amount of work and determine the
distance between them, even when the distance is
between 500 meters and one kilometer.

In section 6 of [9], the Pierre protocol is de-
scribed that doesn’t have this property and can
therefore give Bob more confidence in his privacy.
The downside is that even less information is dis-
closed using this protocol. Instead of a continuous
coordinate system, the Pierre protocol assumes a
grid. Therefore, the coordinates of Alice will be-
come (xr, yr) = (bxr c, b

y
r c), with r being the size of

the grid cells.Louis, Lester and Pierre: Three Protocols for Location Privacy 71

Alice
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Bob

Bob

Bob

D = 5r
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r

Fig. 3. Grid distances in the Pierre protocol. The x and y distances between Alice and
Bob are measured in grid cells (integral units of r), and Dr = (Δxr)

2 + (Δyr)
2. Alice

can determine whether Bob is in the dark grey, medium grey, or light grey area, but
no more specific information than that.

in the threshold distance instead of linear. Instead of the CGS97 cryptosystem,
the Boneh-Goh-Nissim cryptosystem [2] can be used. This protocol has the same
properties (additive homomorphic; decryption takes O(

√
M) time) as CGS97,

but also allows calculations of encryptions of quadratic functions, in addition to
linear ones. With this system, Bob could compute EA(D2 · 2t + s) for a random
salt s between 0 and (2D + 1)2t − 1, and Alice’s work to find the distance to
Bob will be O(r2 · 2t/2).

6 The Pierre Protocol

Our third protocol, Pierre, solves the above problems with the Lester protocol
and gives Bob more confidence in his privacy. On the other hand, if Alice and
Bob are nearby, the Pierre protocol will inform Alice of that fact, but will give
her much less information about Bob’s exact location.

6.1 Protocol Description

In this protocol, Alice picks a resolution distance r, roughly analogous to the
threshold distance r in the previous protocols. Alice and Bob then express their
coordinates in (integral) units of r; that is, if Alice’s true position is (x, y), then
for the purposes of this protocol, she will use coordinates (xr , yr) = (�x

r �, � y
r �),

and similarly for Bob. This has the effect of dividing the plane into a grid, and
Alice and Bob’s location calculations only depend on the grid cells they are in;
see Figure 3.

Figure 15: Grid coordinates used as in the Pierre
protocol. Notice that the squared distance Dr

equals 0 when Alice and Bob are in the same cell,
equals 1 when they’re in adjacent cells and equals
2 when they are in diagonally touching cells.

The protocol again relies on the use of a homo-
morphic encryption function and the authors of [9]
state that both Paillier [10] and CGS97 [11] can be
used. In the description below, the notation from
section 5.2 – and therefore the CGS97 function – is
used.

A→ B r, CA(x2
r + y2

r), CA(2xr), CA(2yr)

B → A CA(ρ0·Dr), CA(ρ1·(Dr−1)), CA(ρ2·(Dr−2))

The values ρ0, ρ1 and ρ2 are random elements
of Z∗p and Dr = (xr − ur)2 + (yr − vr)2 is the
squared distance between Alice and Bob. Bob can
compute the messages he must send, because the
protocol uses a homomorphic encryption function,
he learned CA(x2

r + y2
r), CA(2xr) and CA(2yr) from

Alice and can compute CA(u2
r + v2

r), CA(2u) and
CA(2v) himself:

CA(ρi · ((xr − ur)2 + (yr − vr)2)− i))

=
CA(x2

r + u2
r − 2xrur + y2

r + v2
r − 2yrvr)ρi

CA(iρi)

=

(
CA(x2

r+y2
r)·CA(u2

r+v2r)
(CA(2xr))ur ·(CA(2yr))vr

)ρi

CA(iρi)
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Alice can now check whether one of the three de-
crypted values equals zero: if Alice and Bob are in
the same grid cell, Dr = 0 and therefore ρ0 ·Dr = 0,
if Alice and Bob are in adjacent cells, Dr = 1 and
therefore ρ1 · (Dr − 1) = 0 and if Alice and Bob are
in diagonally touching cells, Dr = 2 and therefore
ρ2 · (Dr − 2) = 0. The authors note that check-
ing whether the plaintext of (c1, c2) = (gr, Ar+m)
equals zero using CGS97 doesn’t require decryp-
tion, since Alice can just check whether ca1 = c2.

5.3.1 Pierre protocol analysis

Like the Lester protocol, the Pierre protocol doesn’t
require a third party and is unable to verify that
the location data used by the participants of the
protocol is correct.

Since the three values returned by Bob include
a random element, Alice is unable to obtain any
information about the location of Bob relative to
her own, unless one of the three messages decrypts
to zero. There is no information that Bob learns
about the location of Alice.

6 Conclusion

Regarding privacy in location based services, four
main parts have been looked into in this paper:
we did a small-scale interview to gauge the usage
of LBS and privacy concerns of students, we dis-
cussed several algorithms that can cloak the loca-
tion of a user using k-anonymity as main privacy
constraint, we discussed an algorithm that allows
an LBS provider to resolve nearest neighbor queries
when the location of the user is cloaked and three
protocols have been discussed that allow location
information to be exchange in a social setting.

6.1 Interview

In our interview, we questioned 69 students of the
Radboud University. The most interesting result
of this interview is that students show concerns re-
garding privacy when using an LBS, but seem to
rate this privacy less important than the right of
government officials or an employer to ask people
about their whereabouts. As this is contrary to
what we expected, this can be an interesting topic
to do further research. It should be noted that the
group we questioned isn’t a representation of soci-
ety and more accurate results can only be obtained
by redoing the interview.

For a previous version of this paper, we have
been doing a different interview and we can con-
clude that the questions in this newer version have

been more carefully designed. In the previous in-
terview, we were asking people whether they know
about the possible consequences of using an LBS,
without explaining those. Therefore we were rely-
ing on the self-judgement of people to decide how
well their knowledge about this topic is. In this
newer version, we first used a question to make
people agree on the meaning of an LBS by giving
explicit devices and services to think about.

After establishing this agreement, the questions
of section 3 were used to determine how concerned
people are, without actually informing them about
the dangers that researchers talk about, while the
questions of section 4 were designed to gauge how
concerned people really are about their privacy by
framing an explicit scenario.

6.2 Discussion of protocols

Using k-anonymity to quantify the level of pri-
vacy a user needs, several protocols have been de-
scribed that allow cloaking of the exact location of
a user when using an LBS. We have seen a straight-
forward approach by Gruteser, et al. [5] which
keeps splitting areas to the lowest possible size that
meets the k-anonymity constraint. The disadvan-
tage of this method is that a single value for kmin is
used in the system and the fact that a fundamental
flaw has been described that can breach privacy.

One attempt to overcome the limitation of using
a single kmin value is the CliqueCloak algorithm by
Gedik, et al. [6], allowing the sender of a message
to specify a different kmin value for each individual
message. Like the Gruteser algorithm, CliqueCloak
relies on a central anonymizing proxy, which is a
property that Chow, et al. have tried to overcome
in a peer-to-peer algorithm [7].

Since the papers that introduce each algorithm
don’t use a common method to test the perfor-
mance and efficiency, it is impossible to quanti-
tatively compare them. However, the flaw in the
Gedik algorithm has been replaced by a failure to
send a message to the LBS in the other two algo-
rithms. From a privacy point of view we believe
this is a better approach, but users probably per-
ceive this as a deficiency of a system implementing
such approach.

We believe that the requirement of setting up
peer-to-peer communications in the last algorithm
may be difficult and cause suboptimal grouping as
a result of peer communication that are blocked by
obstacles and therefore give a slight preference for
the CliqueCloak algorithm. Regarding this pref-
erence, we want to note that mobile phone car-
riers might be a suitable party to implement the
anonymizing proxy, as they must already be aware
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of the location of the client in order to provide cell
routing and are already bound by law to keep this
information private. However, proper comparative
research should be conducted to make a definite
decision.

In section 4 we described the query processing
algorithm introduces by Mokbel, et al. [8], which
can be used by a LBS provider to construct a list of
target objects that can be returned to a client with
a cloaked location as a result of a nearest neigh-
bor query. The completeness property of this algo-
rithm proves the usefulness of the algorithm, while
the property that it returns the minimum number
of result given a rectangular search area makes it
suitable for use with mobile clients. Although we
identify a minor flaw in this latter property, we be-
lieve this algorithm is very useful in an LBS setting.

Finally, we discussed three protocols introduced
by Zhong, et al. [9] that can be used in a social
setting. The Louis protocol makes use of a semi-
trusted third party and includes message hashes
that allow the participating parties to verify the
committed location values after the protocol has
finished. The Lester protocol removes the need for
the third party, at the price of revealing less infor-
mation to the participating parties. We believe the
property of this protocol that finding the distance
between the participating parties has a complexity
linear to the search range to be a very important
flaw in the protocol. Finally, the Pierre protocol
again reveals less information, but has much stricter
control over what information is revealed compared
to the Lester protocol, while also not depending on
a third party.
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